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Abstract—In this paper we address the problem of syn-
thesizing a static antiwindup compensator for linear systems
with saturating input, and input and state delays. Based on
the use of a Lyapunov-Krasovskii functional, a generalized
sector condition and the Finsler Lemma, we propose Linear
Matrix Inequalities (LMI) conditions for the synthesis of a static
antiwindup compensator that guarantees local (regional) input-
to-state stability, as well as asymptotic stability of the closed
loop system. The computation of the antiwindup compensator is
carried out from the solution of a convex optimization problem:
the maximization of the L2-norm upper bound on the admissible
disturbances for which the system trajectories are assured to be
bounded. A numerical example illustrates the effectiveness of our
methodology, which advances the previous related works towards
less conservative results.

Index Terms—Antiwindup, Time Delay, LMI, Continuous
Time

1. INTRODUCTION

THE antiwindup compensation is a well-known and ef-
ficient technique to cope with undesirable effects on

performance and stability which are produced by actuator
saturation in control loops. The first results regarding the
design of antiwindup compensators were motivated by the
degradation of the transient performance induced by saturation
in feedback control systems containing integral actions [1], [2].
More recently, the antiwindup problem has been considered in
a formal context and a large number of systematic synthesis
methods have been proposed [3], [4], [5]. In particular, some
of them are based on Linear Matrix Inequalities (LMI) (or
almost LMI) conditions [6], [7]. The advantage of the LMI-
based methods lies in the fact that the antiwindup design can
be carried out by solving convex optimization problems. In
this case, different optimal synthesis criteria, such as the L2-
gain attenuation or the enlargement of the basin of attraction,
can be directly addressed in an optimal way.

Besides the actuator saturation, it is well-known that time
delays are present in many control applications and are also
source of performance degradation and even instability [8],
[9]. However, most of the antiwindup design methods deal
with only undelayed systems. The antiwindup compensation
for time delay systems, was addressed, for instance, in [10],
[11]. In [10], [12] plants subject to input and/or output delays
are considered. It should be pointed out that these results apply
only to stable open-loop systems and that the approach does
not consider systems presenting state delays. In [13], [11],
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LMI approaches to synthesize a stabilizing static antiwindup
compensator for such systems have been proposed. Differently
from the classical objective to recover performance, they use
the antiwindup compensation to enlarge the region of attraction
of the closed loop system. In particular, the action of distur-
bances and closed loop performance issues are not considered.
The dynamic antiwindup synthesis for state-delayed systems
has been recently addressed in [14], [15]. The approach in
[14] is based on congruence transformations, similar to the
ones proposed in [16]. From a Projection Lemma approach, it
is shown that the synthesis of a rational compensator can be
carried out by LMI conditions [15].

Recently the work [17] has proposed LMI conditions for
synthesizing a static antiwindup compensator that assures the
closed loop stability for systems with time delay in both input
and state, without considering the presence of disturbance
of any type on the system. The matrix representation of
the existence conditions of an antiwindup compensator is
obtained by augmenting its dimension through the insertion of
a redundant signal (first order time derivative from states), and
then associated with a Finsler multiplier. In fact the applied
technique implies forcing almost all of many elements of the
Finsler multiplier to be zero, which adds great conservative-
ness to the results. In [18] a static antiwindup compensator
on a delay independent framework was proposed. This means
that the delay can be arbitrarily long. Once the LMIs are
feasible, the resulting antiwindup compensator assures the
closed loop stability. The main drawback of this framework is
on the strength of the assurance, leading usually to an under
performing result when it exists. Yet later, in [19], a dynamic
antiwindup compensator on a delay dependent framework was
proposed. The advantages of a dynamic compensator reside on
the additional freedom degrees of the compensator to better
adjust the performance. The drawback resides on the imple-
mentation cost of memory-based antiwindup compensation.
In some applications as Active Queue Management (AQM)
for Transmission Control Protocol/Internet Protocol (TCP/IP)
Routers, the router processor is already busy with packet
routing and filtering, and thus it becomes prohibitive.

The present work proposes the synthesis of static anti-
windup compensators for input and state delayed systems,
with saturating input and subjected to L2-norm bounded
disturbances. The proposed synthesis method exceeds the
ones proposed in the literature so far in being less con-
servative. This is achieved by redundantly representing the
closed loop system, equivalently representing its Lyapunov-
Krasovskii derivative with the usage of Finsler Lemma, and
carrying out the development of LMI representation preserving
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the freedom of its multipliers. Beyond the conservativeness
criteria, in a direct comparison with [17], we consider L2-
norm bounded disturbances. Compared to [14], [15] and [18],
our framework is delay-dependent, which suits best systems
with time delays which are not indefinitely long. Compared to
[19], we propose a static antiwindup compensator, which as a
matter of implementation is memoryless, thus demanding less
resource than the dynamic one proposed in prior studies.

This paper is organized as follows: in Section 2 we present
formally the problem under study. In Section 3 we present
the lemmas and definitions used all over the development. In
Section 4 we ennounce and prove the main theorem of this
work. In Section 5 we illustrate the result with a numerical
example of interest. Finally, Section 6 casts the concluding
remarks of this work.

2. PROBLEM STATEMENT

The following notation is used - For two symmetric matrices,
A and B, A > B means that A − B is positive definite. AT

denotes the transpose of A. A(i) denotes the ith row of matrix
A. ? stands for symmetric blocks. I denotes an identity matrix of
appropriate order. λ(P ) and λ̄(P ) denote the minimal and maximal
eigenvalues of matrix P , respectively. Cτ = C([−τ, 0], <n) is the
Banach Space of continuous vector functions mapping the interval
[−τ, 0] into <n with the norm ‖ φ ‖c= sup

−τ≤t≤0
‖ φ(t) ‖.

‖ · ‖ refers to the Euclidean vector norm. Cvτ is the set defined
by Cvτ = {φ ∈ Cτ ; || φ ||c< v, v > 0}. For v ∈ <m, sat(v) :

<m → <m denotes the classical symmetric saturation function
defined as (sat(v))(i) = sat(v(i)) = sign(v(i)) min(uo(i), |v(i)|),
∀i = 1, . . . ,m, where uo(i) > 0 denotes the ith magnitude bound.
blockdiag(· · · ) is a block diagonal matrix whose diagonal blocks
are the ordered arguments. He{A} = A+AT .

Consider the following plant model

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t− τ) +Bωω(t)
y(t) = Cyx(t)
z(t) = Czx(t) +Dzu(t)

(1)

where vectors x(t) ∈ <n, u(t) ∈ <m, ω(t) ∈ <q, y(t) ∈ <p,
z(t) ∈ <l are the plant state, input, disturbance, measured
output and regulated output, respectively. The time delay τ is
assumed to be constant. A, Ad, B, Bω , Cy , Cz and Dz are
matrices of appropriate dimensions.

The plant inputs are supposed to be bounded as follows

−uo(i) ≤ u(i) ≤ uo(i) , uo(i) > 0, i = 1, . . . ,m (2)

The disturbance vector ω(t) is assumed to be limited in energy,
that is, ω(t) ∈ L2. Hence for some scalar δ, 0 ≤ 1

δ <∞, the
disturbance ω(t) is bounded as follows

‖ω(t)‖22 =

∫ ∞
0

ω(t)Tω(t)dt ≤ 1

δ
(3)

In order to control plant (1), we assume that the following
controller has been designed for stabilizing the system disre-
garding the control bounds given in (2)

ẋc(t) = Acxc(t) +Ac,dxc(t− τ) +Bcuc(t)
yc(t) = Ccxc(t) +Dcuc(t)

(4)

where xc(t) ∈ <nc , uc(t) ∈ <p and yc(t) ∈ <m. Matrices Ac,
Ac,d, Bc, Cc and Dc are matrices of appropriate dimensions.
The nominal interconnection of controller (4) with plant (1) is
given by uc(t) = y(t) and u(t − τ) = yc(t − τ). Because of
the control bounds, the de facto control signal to be injected
in the system considering the controller output yc(t) is

u(t− τ) = sat(yc(t− τ))

To mitigate the effects of the windup caused by saturation,
we add to the state of the previously designed controller an
antiwindup signal, thus the controller ends up being described
as follows

ẋc(t) = Acxc(t) +Ac,dxc(t− τ) +Bcuc(t) + Ecψ(yc(t))
yc(t) = Ccxc(t) +Dcuc(t)

(5)
where

ψ(yc(t)) = sat(yc(t))− yc(t)
ψ(yc(t− τ)) = sat(yc(t− τ))− yc(t− τ)

Comment 1: This paper copes with for antiwindup syn-
thesis, and we are not concerned with the computation of
nominal controller (4). We assume that it has been previ-
ously computed and it would ensure the global asymptotic
stability of the closed loop system (1) under the connection
u(t− τ) = yc(t− τ).

3. PRELIMINARIES

Through the following matrices

A =

[
A 0

BcCy Ac

]
,Ad =

[
Ad +BDcCy BCc

0 Ac,d

]
B =

[
B
0

]
,Bω =

[
Bω
0

]
, Ǐ =

[
0
Inc

]
,Dz = Dz

Cz =
[
Cz +DzDcCy DzCc

]
,K =

[
DcCy Cc

]
the closed loop system can be represented as follows

ξ̇(t) = Aξ(t) + Adξ(t− τ) + ǏEcψ(yc(t))
+Bψ(yc(t− τ)) + Bωω(t)

z(t) = Czξ(t) + Dzψ(yc(t)) + Dz,ωω(t)
(6)

where ξ(t) =
[
x(t)T xc(t)

T
]T

and yc(t) = Kξ(t)
The initial condition of system (6) is denoted by function

φξ, defined in the interval [−τ, 0], that is

φξ(θ) =
[
x(θ)T xc(θ)

T
]T

=
[
φx(θ)T φxc(θ)T

]T
,∀θ ∈ [−τ, 0],

(t0, φξ) ∈ <+ × Cvτ

Considering matrices G, Gτ ∈ <m×(n+nc) and the sets

S(uo) =
{
ξ(t) ∈ <n+nc ;
|(K(i) +G(i))ξ(t)| ≤ uo(i) , i = 1, . . . ,m

}
Sτ (uo) =

{
ξ(t− τ) ∈ <n+nc ;
|(K(i) +Gτ(i))ξ(t− τ)| ≤ uo(i) , i = 1, . . . ,m

}
we can define now the following lemmas which shall be used
along our development.
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Lemma 1. Generalized Sector Condition [20]: If ξ(t) ∈
S(uo) and ξ(t− τ) ∈ Sτ (uo) then the relations

ψ(yc(t))
TT
(
ψ(yc(t))−Gξ(t)

)
≤ 0

ψ(yc(t− τ))TTτ
(
ψ(yc(t− τ))−Gτξ(t− τ)

)
≤ 0

are verified for any diagonal positive definite matrices T , Tτ ∈
<m×m.

This Lemma is used as a S-procedure to reduce the con-
servative of the results. It restricts the solution search from
<n+nc to a subset where the condition of this lemma is valid.

Lemma 2. Jensen Inequality[21]: For any scalar τ > 0, pos-
itive definite matrix Q ∈ <m×m and function x : [0, τ ]→ <m
such that the integral is definite, the following inequality holds:

τ

∫ τ

0

x(θ)TQx(θ)dθ ≥
(∫ τ

0

x(θ)T dθ

)
Q

(∫ τ

0

x(θ)dθ

)
This lemma is needed to represent matricially our proposed

synthesis conditions. Since we have cross product of closed
loop system dynamic terms within an integral, we need to
properly separate them, and this is done through this lemma.

Lemma 3. Finsler Lemma[22]: If there exist a matrix M1 ∈
<m×m, a vector x(t) ∈ <m and a matrix B ∈ <p×m such
that x(t)TM1x(t) < 0,∀x(t) 6= 0 | Bx(t) = 0 is verified, then
there exists a matrix F ∈ <m×p such that

M1 + FB + BTFT < 0

In other words, both statements are equivalent.

This is the main tool of our development, and its applica-
tion comprises its main contribution, which is reducing the
cosnervativeness of the synthesis conditions.

4. MAIN RESULT

We derive now a result for synthesizing a local stabiliz-
ing static antiwindup compensator. Consider the Lyapunov-
Krasovskii candidate

V (t) = ξ(t)TPξ(t) +
∫ t
t−τ ξ(θ)

TRξ(θ)dθ

+
∫ 0

−τ
∫ t
t+θ

ξ̇(β)TQξ̇(β)dβdθ
(7)

where P = PT > 0, R = RT > 0 and Q = QT > 0 ∈
<(n+nc)×(n+nc). Then, the following theorem can be stated.

Theorem 1. If there exist symmetric positive definite P̃ ,
R̃, Q̃ ∈ <(n+nc)×(n+nc), matrices F̃12, F̃22, F̃32, F̃42 ∈
<(n+nc)×(n+nc), F̃52, F̃62, G̃, G̃τ ∈ <m×(n+nc), F̃72 ∈
<q×(n+nc), scalars γ, α, ζ, and structured matrices F̃11, F̃21,
F̃31, F̃41 ∈ <(n+nc)×(n+nc), F̃51, F̃61 ∈ <m×(n+nc), where

F̃11 =

[
F̃11a 0

F̃11b aInc

]
, F̃21 =

[
F̃21a 0

F̃21b bInc

]
F̃31 =

[
F̃31a 0

F̃31b cInc

]
, F̃41 =

[
F̃41a 0

F̃41b dInc

]
F̃51 =

[
F̃51a eIm×nc

]
, F̃61 =

[
F̃61a fIm×nc

]
F̃71 =

[
F̃71a gIq×nc

]
, T = θIm, Tτ = θτIm

and parameters a, b, c, d, e, f , g, θ, θτ are determined a
priori, such that the following LMIs are verified[

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

]
< 0 (8)

where

Σ1 =



τQ̃− F̃11 − F̃T11
P̃ − F̃21 + (A + Ad)T F̃T11 − F̃T12

−F̃31 + F̃T12
−F̃41 − ATd F̃T11 + F̃T12
−F̃51 + ETc ǏT F̃T11
−F̃61 + BT F̃T11
−F̃71 + BTω F̃T11

0



Σ2 =



?(
R̃+ F̃21(A + Ad)− F̃22

+(A + Ad)T F̃T21 − F̃T22

)
F̃31(A + Ad)− F̃32 + F̃T22

F̃41(A + Ad)− F̃42 − ATd F̃T21 + F̃T22
TG̃+ F̃51(A + Ad)− F̃52 − ETc ǏT F̃T21

F̃61(A + Ad)− F̃62 + BT F̃T21
F̃71(A + Ad)− F̃72 + BTω F̃T21

Cz



Σ3 =



?
?

−R̃+ F̃32 + F̃T32
F̃42 − ATd F̃T31 + F̃T32
F̃52 + ETc ǏT F̃T31

Tτ G̃τ + F̃62 + BT F̃T31
F̃72 + BTω F̃T31

0



Σ4 =



?
?
?

− 1
τ Q̃− F̃41Ad + F̃42 − ATd F̃T41 + F̃T42
−F̃51Ad + F̃52 + ETc ǏT F̃T41
−F̃61Ad + F̃62 + BT F̃T41
−F̃71Ad + F̃72 + BTω F̃T41

0



Σ5 =



? ?
? ?
? ?
? ?(

−2Tα+ F̃51ǏEc
+ETc ǏT F̃T51

)
?(

F̃61ǏEc+

BT F̃T51

)  −2Tτα+

F̃61B+

BT F̃T61


F̃71ǏEc + BTω F̃T51

(
F̃71B

+BTω F̃T61

)
Dz 0
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Σ6 =



? ?
? ?
? ?
? ?
? ?
? ?(

−Iq + F̃71Bω
+BTω F̃T71

)
?

0 −γIl


[

P̃ ?

αK(i) + G̃(i) ζu2o(i)

]
> 0, i = 1, . . . ,m (9)

[
P̃ ?

αK(i) + G̃τ(i) ζu2o(i)

]
> 0, i = 1, . . . ,m (10)

then there exists a static antiwindup compensator Ec ∈
<nc×m as in (5) which ensures that

1) The trajectories of the system (6) are bounded for every
initial condition in the ball

B(β) =
{
φξ ∈ Cvτ , ‖φξ‖2c ≤ β0

}
β0 =

β

λ̄(P ) + τ2λ̄(Q) + τ λ̄(R)

with β = µ−1 − (1/δ)/α, µ = ζ/α, P = P̃ /α, Q =
Q̃/α and R = R̃/α

2) ‖z(t)‖22 ≤ γV (0) + γ
α‖ω(t)‖22

3) When ω(t) = 0, for all initial conditions belonging to

B(µ−1) =
{
φξ ∈ Cvτ ; ‖φξ‖2c ≤ µ0

}
and

µ0 =
µ−1

λ̄(P ) + τ2λ̄(Q) + τ λ̄(R)

the corresponding trajectories converge asymptotically
to the origin.

Proof. Function (7) satisfies λ(P ) ‖ξ(t)‖22 ≤ V (t) ≤ (λ̄(P )+

τ2λ̄(Q) + τ λ̄(R)) ‖ξt‖2c , and ξt denotes the restriction of ξ(t)
to the interval [t−τ, t] as in [8]. Hence, if the initial condition
φξ ∈ B(β), it follows that V (0) ≤ β. Define now the auxiliary
function J (t) = V̇ (t)− 1

αω(t)Tω(t)+ 1
γ z(t)

T z(t). If J (t) <
0, it follows that∫ T

0
J (t)dt = V (T )− V (0)− 1

α

∫ T
0
ω(t)Tω(t)dt

+ 1
γ

∫ T
0
z(t)T z(t)dt < 0

(11)

Thus, for any φξ belonging to B(β), the above relation
implies that V (T ) ≤ V (0) + α−1‖ω(t)‖22 ≤ β + (1/δ)/α ≤
µ−1. Hence, from (7) the satisfaction of (11) implies that
ξ(T )TPξ(T ) ≤ V (T ) ≤ µ−1, that is, for all T > 0 the
trajectories of the system do not leave the set ε(P, µ−1) ={
ξ ∈ <n+nc , ξ(t)TPξ(t) ≤ µ−1

}
for all ω(t) satisfying (3)

and any initial condition belonging to B(β). Moreover, for
T → +∞, (11) yields ‖z(t)‖22 <

γ
α ‖ω(t)‖22 + γV (0).

Now, from Lemma 1, provided that ξ(t) ∈ S(uo) and ξ(t−
τ) ∈ Sτ (uo) an upper bound for J (t) becomes

J (t) ≤ ξ̇(t)TPξ(t) + ξ(t)TP ξ̇(t) + ξ(t)TRξ(t)

−ξ(t− τ)TRξ(t− τ) + τ ξ̇(t)TQξ̇(t) + 1
γ z(t)

T z(t)

−
∫ t
t−τ ξ̇(θ)

TQξ̇(θ)dθ − 2ψ(yc(t− τ))TTτψ(yc(t− τ))

+ψ(yc(t))
TTGξ(t) + ξ(t)TGTTψ(yc(t))

−2ψ(yc(t))
TTψ(yc(t)) + ψ(yc(t− τ))TTτGτξ(t− τ)

+ξ(t− τ)TGTτ Tτψ(yc(t− τ))− 1
αω(t)Tω(t)

Applying Lemma 2 on the integral term on the right side of
the above inequality and defining

∫ t
t−τ ξ̇(θ)dθ = ξ(t)− ξ(t−

τ), we have

−
∫ t
t−τ ξ̇(θ)

TQξ̇(θ)dθ ≤ · · ·

−
(∫ t

t−τ ξ̇(θ)
T dθ

)T
1
τQ
(∫ t

t−τ ξ̇(θ)dθ
)

Thus, we have(∫ t
t−τ ξ̇(θ)

T dθ
)T

1
τQ
(∫ t

t−τ ξ̇(θ)dθ
)

= · · ·(
ξ(t)− ξ(t− τ)

)T 1
τQ
(
ξ(t)− ξ(t− τ)

)
and J (t) becomes bounded by

J (t) ≤ ξ̇(t)TPξ(t) + ξ(t)TP ξ̇(t) + ξ(t)TRξ(t)

−ξ(t− τ)TRξ(t− τ) + τ ξ̇(t)TQξ̇(t)− 1
αω(t)Tω(t)

−(ξ(t)− ξ(t− τ))T 1
τQ(ξ(t)− ξ(t− τ)) + 1

γ z(t)
T z(t)

+ψ(yc(t))
TTGξ(t)− 2ψ(yc(t− τ))TTτψ(yc(t− τ))

−2ψ(yc(t))
TTψ(yc(t)) + ψ(yc(t− τ))TTτGτξ(t− τ)

+ξ(t− τ)TGTτ Tτψ(yc(t− τ)) + ξ(t)TGTTψ(yc(t))

with a vector η(t)[
ξ̇(t)T ξ(t)T ξ(t− τ)T (ξ(t)− ξ(t− τ))T · · ·
· · · ψ(yc(t))

T ψ(yc(t− τ))T ω(t)T
]T

Since we want to ensure J (t) < 0, it suffices ensuring its
upper bound as negative definite. Once we can matricially
represent it as η(t)TM1η(t) < 0, we now look forward to
ensure M1 < 0. M1 is given as follows:

τ
2Q 0 0 0 0 0 0
P 1

2R 0 0 0 0 0
0 0 − 1

2R 0 0 0 0
0 0 0 − 1

2τQ 0 0 0
0 TG 0 0 −T 0 0
0 0 TτGτ 0 0 −Tτ 0
0 0 0 0 0 0 − 1

2αIq


+(?) + 1

γ C
T
z Cz

where Cz =
[

0 Cz 0 0 Dz 0 0
]

We now apply Lemma 3, which shall reduce greatly the
conservativeness of our condition M1 < 0, for as we do
not want to ensure M1 < 0 for any η(t), but only for the
de facto trajectories of the closed loop system (6). Thus we
define matrix B as

B ,

[
−I A + Ad 0 −Ad ǏEc B Bω
0 −I I I 0 0 0

]
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and from Lemma 3 we now look forward to ensure M1 +
FB + BTFT < 0. We choose F to be[

Fi1 Fi2
...

...

]
, i = 1, . . . , 7

and we can write FB as

−F11 F11(A + Ad)− F12 F12 −F11Ad + F12

−F21 F21(A + Ad)− F22 F22 −F21Ad + F22

−F31 F31(A + Ad)− F32 F32 −F31Ad + F32

−F41 F41(A + Ad)− F42 F42 −F41Ad + F42

−F51 F51(A + Ad)− F52 F52 −F51Ad + F52

−F61 F61(A + Ad)− F62 F62 −F61Ad + F62

−F71 F71(A + Ad)− F72 F72 −F71Ad + F72

· · ·

· · ·

F11ǏEc F11B F11Bw
F21ǏEc F21B F21Bw
F31ǏEc F31B F31Bw
F41ǏEc F41B F41Bw
F51ǏEc F51B F51Bw
F61ǏEc F61B F61Bw
F71ǏEc F71B F71Bw


Let M2 = M1 + FB + BTFT , where M2 is as follows

Now, to assure J (t) < 0 it is sufficient to satisfy
M2 < 0. Hence we multiply pre and post M2 by
blockdiag{

√
α, · · · ,

√
α}, thereby making the following vari-

able changes. By applying the Schur complement, we reach
(8), the first LMI condition of this theorem.

P̃ = αP, R̃ = αR, Q̃ = αQ, G̃ = αG, G̃τ = αGτ
F̃ij = αFij , i = 1, . . . , 7, j = 1, 2

(12)

As stated in the beginning of this proof, if J (t) < 0, from (11)
we can conclude that the trajectories of ξ(t) never leave the
ellipsoid ε(P, µ−1) for all t > 0, provided that ξ(t) ∈ S(uo)
and ξ(t − τ) ∈ Sτ (uo). Hence, the inclusion of ε(P, µ−1) ⊂
S(uo)∩Sτ (uo) assures that the conditions of Lemma 1 hold.
Thus we add to our LMI set the following[

P ?
K(i) +G(i) µu2o(i)

]
> 0, i = 1, . . . ,m[

P ?
K(i) +Gτ(i) µu2o(i)

]
> 0, i = 1, . . . ,m

Pre and post multiplying the above matrices by
blockdiag{

√
α, · · · ,

√
α}, considering ζ = µα and the

variable changes pointed out in (12) we obtain LMIs (9) and
(10).

As the verification of (9) and (10) assures the validity of
Lemma 1, the simultaneous verification of (8)-(10) assures that
J (t) < 0, ∀ω(t) such that ‖ω(t)‖22 ≤

1
δ and ∀φξ ∈ B(β). This

concludes the proof of Theorem 1.

5. NUMERICAL EXAMPLE

Consider the TCP/IP router queue model with a
proportional-integral (PI) controller from [23], [24]. The state
variables represent the congestion window and the queue
size, respectively, the disturbance accounts for User Datagram
Protocol (UDP) traffic, and the input is the packet discarding
probability. The setup is N = 60, τ = 0.246, C = 3750,

p0 = 0.008 and q0 = 175. Below is given the corresponding
plant model.

A =

[
−0.2644 −0.0044
243.9024 −4.065

]
; B =

[
−480.47

0

]
Ad =

[
−0.2644 −0.0044

0 0

]
; Bω =

[
0
1

]
Cy = Cz =

[
0 1

]
; Dz,ω = 0; Dz = 0

Ac = 0; Ac,d = 0; Bc = 1; Cc = 9.7811× 10−6

Dc = 18.4972× 10−6; uo = 0.991; τ = 0.246

The following parameters are found by grid search. The
obtained parameters are: a = 1.20, b = 0.50, c = 0.50,
d = 1.55, e = −1.00, f = −1.00, g = −0.20, θ = 1.00 and
θτ = 1.00. Resulting 1

δ = 3.7765×1011 and the corresponding
antiwindup compensator is Ec = 6.8809× 104.

In the simulation, we apply a step function with amplitude
of 6 × 105, being applied to the plant in the interval [5, 35].
The response of the system is depicted in Figure 1. Where
we compare the system response among PI controller, static
antiwindup and dynamic antiwindup compensator [19]. We
can clearly see that the queue size tracks the equilibrium point
much faster when our compensator is used.

It should be noted that our goal is to return to the equi-
librium point as fast as possible. We do not acknoledge other
metrics to be as effective as this one in delay control of data
networks.
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Fig. 1. TCP/IP Router Queue Size X Discarding Probability

6. CONCLUSION

In this work we have presented a methodology for syn-
thesizing static antiwindup compensators for systems subject
to time delays and input saturation. Conditions in an LMI
form have been proposed in order to compute an antiwindup
compensator, ensuring that the trajectories are bounded for
L2-norm bounded disturbances, while ensuring the internal
asymptotic stability of the closed loop system. A numerical
example illustrates our results. Clearly our methodology out-
paces the previous state of the art in this matter.
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−F41 F41(A + Ad)− F42 F42

(
− 1

2τ
Q+ F42

−F41Ad

)
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