
  
Abstract— Within Business Intelligence (BI) systems, an industrial 
Key Performance Indicator (KPI) is a measurement of how well the 
industrial process in the organization performs an operational activity 
that is critical for the current and future success of that organization 
[1]. The industrial leading indicators are one type of KPIs that present 
key drivers of industrial business value, are predictors of future 
outcomes. Thus leading indicator discovery is critical to success of the 
industrial objectives. There are some challenges in leading indicator 
discovery. The traditional approach depending on domain experts’ 
experiences is labor-intensive and error-prone. In addition, because 
the time shifts between industrial KPIs are vague and often inconstant 
for variability of business concerns, the correlation between them 
cannot be correctly calculated using the traditional distance functions. 
In this paper, we propose a semi-automatic system with an iterative 
learning process for discovering leading indicators to help trace 
anomalies and optimize the industrial objectives. Finally two industrial 
case studies are conducted by applying the proposed methods in the 
production printing application. The proposed system has two key 
differentiations and novelties: (1) the semi-automatic framework uses 
temporal data mining techniques combined with domain knowledge to 
enable timely access to KPI analysis, and anomaly tracing; and (2) an 
iterative learning method continuingly uncovers the “root” leading 
indicators along with the changes of business environment. 

 
 
Index Terms—KPI, Leading Indicator, Business Process, Iterative 

Learning, Anomaly, Time Series. 

I. INTRODUCTION 
ithin Business Intelligence (BI) systems (e.g., 
business dashboard, business performance 
management, management information system, etc.), 

industrial Key Performance Indicators (also known as KPI) 
are one tool used to convey the relative health of the 
business, or a portion of that business. A KPI is a specific 
metric (a quantitative, periodic measurement of one or more 
processes), chosen from all of the collected or possible 
industrial metrics within a business in such a manner as to  
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convey the most amount of information in a single 
measurement – the “key” measurement. As such, a KPI is a 
quantifiable measurement of how well an operational, 
tactical or strategic activity is performed and progressed in 
the industrial process within an organization [1]. KPIs must 
reflect the critical success factors of an organization. Not all 
metrics are indicators, not all indicators are KPIs either, but 
all KPIs are indicators and all indicators are metrics, thus 
defining an ontological hierarchy of measurements.  

There are three types of KPI [1]: (1) Leading indicator: 
“a KPI that measures activities that have a significant effect 
on future performance of industrial objectives” which are 
causal roots of the outcome (i.e. lagging indicator) they 
influence, and actionable for the future performance against 
one or more lagging indicators; (2) Lagging indicator: a 
KPI that measures the output of past activities; and (3) 
Diagnostic measure: a KPI that is neither leading nor 
lagging, but signals the health of industrial processes or 
activities. For example[1], “Number of clients that sales 
people meet with face to face each week” may be a leading 
indicator of “Sales Revenue” (a lagging indicator or 
outcome); “Complex repairs completed successfully during 
the first call or visit” be a leading indicator of “Customer 
Satisfaction” (a lagging indicator or outcome). 
“Throughput” should be a diagnostic measure of 
“Efficiency” of a production workflow. Leading indicators 
are very powerful metrics in that they possess not only the 
predictive and insightful causal relationship(s) within the 
business process(s), but also enable the actionable course for 
continuing industrial process improvement. Therefore, 
creating effective leading KPIs is critical to the success of 
any business organization so that not only it is agile to 
changes, but also is prepared for changes in advance. 
However, identifying leading indicators is often hard and 
tricky requiring months to collect requirements, 
standardizing definitions and rules, prioritizing metrics, and 
soliciting feedback, etc. Moreover, because the time shifts 
between the leading indicators and the corresponding 
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Fig. 1. The Schematic View and Iterative Steps 
 

affected lagging indicators are vague and often inconstant 
for variability of business concerns, the traditional approach 
depending on domain experts’ experiences is 
labor-intensive and error-prone. Given that 20% of the work 
in developing a successful KPI comes from a 
deploy-observe-adjust cycle [1] – i.e. putting a KPI into a BI 
system, seeing how it impacts behavior and performance, 
and then adjusting accordingly – many of the KPIs visible in 
a typical BI system at any point in time are not delivering 
full value to the users of these systems. Furthermore, it is 
much more challenging to identify the more powerful 
value-driver KPIs (i.e. leading indicators). Finally, many 
traditional BI systems, such as Business Scorecard [12], 
Executive Information Systems [13], Dashboard [14,15], 
deliver primarily pre-defined historic metrics (or lagging 
indicators) for a long-term strategic or mid-term tactical 
analysis, and lack the necessary flexibility to support 
evolving metrics or data collection points over time for 
real-time operational analysis. There are also some BI 
systems improving business process quality through 
managing exceptions or execution quality [16,17]. 

In this paper, we propose a semi-automatic system with an 
iterative learning process for analyzing operational metrics, 
factoring out the key performance indicators (KPIs) and 
then further discovering leading indicators by applying 
certain data mining techniques incorporated with the domain 
knowledge. The system involves domain experts to define 
the KPIs and validate the leading indicators to avoid 
“black-box” effects [20]. In order to illustrate how the 
proposed system and methods can be applied in a specific 
business process, two case studies have been conducted for 
typical real-world production print workflows (e.g., 

transaction printing, and book printing, as examples).  The 
major challenges being investigated and addressed in this 
paper are: 

• How to automate the computation intensive data 
analysis while incorporating as much domain 
knowledge as possible? 

• How to effectively factor out overlapping or 
non-critical metrics? 

• How to calculate the approximate influencing time 
shifts between correlated metrics? 

• How to measure the significance of causal 
relationships between the leading indicators and 
the metrics they predict? 

• How to enable the addition of new data collection 
points if the resulting leading indicators are not 
satisfactory based on domain knowledge, when 
business concerns change, or when other 
alternations occur within the underlying 
organization? 

Compared with the traditional analytic capabilities in 
most existing BI systems, the proposed system and methods 
have two key differentiations and innovations: (1) the 
semi-automatic framework simplifies many traditional 
labor-intensive and error-prone steps through the 
application of temporal data mining techniques (e.g., 
dynamic time warping, Granger Causality, adaptive 
agglomerative clustering) combined with specific domain 
knowledge, thus enabling timely access to operational 
metrics, KPI analysis, and powerful leading indicator 
discovery; and (2) an iterative learning methodology not 
only continuingly uncovers the “root” leading indicators, 
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but also enables the flexibility and adaptability for metrics 
updates and additional data collection points.  

The discovered leading relationship also helps to correlate 
the detected anomalies in business processes. Anomalies 
indicate some unexpected situations such as operational or 
business measurement below a certain threshold [23,24]. As 
we know, anomaly detection and tracing are critical to keep 
a business process workflow running soundly. Even small 
faults may cause the whole workflow process unable to 
work properly. However detecting, understanding, and 
tracing anomalies in the complex business process are not 
trivial since the states of business workflow components 
vary along time, anomalies usually propagate, and the 
number of anomalies is too small. We propose to trace 
anomalies and identify the anomaly sources by looking for 
the correlation between the KPIs where the anomalies 
present instead of looking for the correlation between the 
anomalies directly. 

The rest of our paper is organized as follows: Section II 
describes the system scheme and the iterative learning 
methodology for KPI analysis and leading indicator 
discovery. Section III introduces Dynamic Time Warping 
(DTW) and Granger Causality in leading indicator 
identification. Section IV specifies how to use adaptive 
agglomerative clustering to construct causal relation 
hierarchy between KPIs, and find the critical root leading 
indicators. Section V presents how to detect anomalies and 
trace them in a business process by using leading indicator 
discovery techniques. Two case studies that are based on the 
discrete event simulations of the real-world production 
printing workflows are illustrated in Section VI. Section VII 
concludes the paper with summary and future research 
topics. The preliminary version of this paper is published in 
[19]. 
 

II. SYSTEM SCHEME FOR KPI ANALYSIS LEADING 
INDICATOR DISCOVERY 

Figure 1 illustrates the schematic view of various 
elements and steps within the proposed system and iterative 
learning process for KPI analysis and leading indicator 
discovery. It consists of the following 10 major steps 
(numbered from 1 to 10 in Figure 1): 
 
1. For any business organization, the underlying domain 

model, which encapsulates business goal, business 
process and workflow model, key terminology and 
relationships, business assumption, etc., drives the 
definition of data collection points (or data model) that 
need to be tracked in a BI system. The Raw Data is the 
basic data entities, which may be culled from recorded 
events, workflow or machine logs, metrics, etc., and 
provides a baseline data source for further data-driven 
analysis. 

 

2. Usually, the domain experts identify and define KPIs 
and their formulas based on existing raw data, business 
goals, and personal experience. Some KPIs are generic 
-- for example, process efficiency and throughput are 
generic measurements in the manufacturing domain. 
Some KPIs are customized to a particular business goal 
or application – for instance, the number of impressions 
achieved on a press is customized to the printing 
domain, but bears little meaning in other manufacturing 
environments. The metrics used in this step are specific 
sets of time series data from step 1 as identified by the 
domain expert. 

 
3. In a complex system, a significant number of metrics 

may be collected. Some metrics contain little 
information related to certain business goals, and some 
metrics are overlapping. It is critical to filter out the less 
important metrics or noises and focus on the small 
number of metrics in a particular business context that 
yield the greatest business value. We propose to use 
unsupervised dimensionality reduction techniques, such 
as Principal Component Analysis (PCA) [2]/Singular 
Value Decomposition (SVD) [3] to filter out the less 
significant metrics. In addition, an unsupervised 
dimensionality reduction technique, Piecewise 
Aggregate Approximation (PAA) [4] can help to reduce 
the time dimensionality of each time series if the 
computational efficiency is required. 

 
4. In order to discover leading indicators, we explore the 

correlations among the reduced indicator sets by 
considering the time-shifts [11]. Traditional metric 
distance functions, including Euclidean distance and 
correlation coefficients, are not suitable for detecting 
correlation between time series. Non-metric distance 
functions like Dynamic Time Warping (DTW), which is 
widely used in speech recognition, is well suited for 
leading indicator discovery. DTW applies dynamic 
programming with time composition and 
decomposition [5] to discover the best alignment warp 
with the minimum alignment distortion (distance). This 
alignment warping path can then be used to compute the 
time shifts between various metrics, to help determine 
the time order of these metrics, and to construct the 
causal hierarchy. In the case of two highly correlated 
metrics it is often the case that the one appearing before 
the other is a leading indicator to the other. However, 
there are two disadvantages of utilizing DTW for 
leading indicator discovery: (a) the highly correlated 
time series does not provide theoretic foundation of any 
causal relationships between the series themselves; and 
(b) it is difficult to define the threshold alignment 
warping distance. In order to overcome these 
drawbacks we next apply Granger Causality [6] in 
order to test causal direction between the time series. 
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This determines whether one time series variable can 
help to predict the other. Although Granger Causality is 
unable to obtain the time shifts, it provides the solid 
statistical foundation for the leading indicator discovery 
and establishes the significance scores of causal 
relationships between metrics. Therefore, we use both 
DTW and Granger Causality to derive the distance 
matrix among indicators, which dictate the correlation 
between any two indicators. Detailed technical content 
regarding DTW and Granger Causality are provided in 
Section 3. 

 
5. Any specific metric may have many leading indicators, 

each of which could in turn lead to additional metrics. 
This many-to-many directional complexity increases 
polynomially as the number of indicators increases. 
Therefore, after the correlation distance matrix is 
derived in step 4, we propose the use of adaptive 
agglomerative clustering to obtain the hierarchical 
relationships in a dendrogram, thus partitioning all of 
the metrics into clusters. The details behind this 
proposed clustering algorithm are provided in Section 
4. 

 
6. All metrics falling into the same cluster at this point are 

more highly correlated with each other than across the 
clusters. Within an individual cluster, the metrics 
preceding others are assumed to be the root leading 
indicators for this cluster.  

 
7. After the root leading indicator is discovered from each 

cluster in step 6, the domain experts will examine them 
against the underlying domain model and determine 
whether the resulting leading indicators are actionable 
and/or meaningfully critical in certain business context.  

 
8. In some cases, the domain experts will discover one or 

more leading indicators with actionable characteristics, 
thus designating these indicators as the desired leading 
KPI. As business processes change, the entire discovery 
process, from step 1 to step 7, continuingly progresses, 
such that the resulting leading indicators also change 
over time.  

 
9. In other cases, the domain experts may decide to delete 

or devalue some indicators, or decide to add more 
metrics (which may imply new data collection points to 
be added) to the domain model. As the underlying 
domain model is updated, the scheme of raw data 
collection is evolved via expansion or merging. 
Meanwhile, the entire discovery process, from step 1 to 
step 7, continuingly progresses, such that the resulting 
leading indicators also change over time. 

 

10. Over time the business concerns or context will change, 
and the domain model is updated accordingly. Similarly, 
the entire discovery process, from step 1 to step 7, 
continuingly progresses, such that the resulting leading 
indicators may evolve over time. 

In summary, the above 10 steps illustrate an iterative 
learning methodology to discover the leading indicators in a 
business process over time via data mining techniques 
combined with domain knowledge guidance. The learned 
leading indicators can also evolve with changing business 
objectives, and those that are determined to be actionable are 
implemented as KPIs within the environment so that 
continuing process improvement is enabled. 

 
III. LEADING INDICATOR IDENTIFICATION 

METHODS 
As we discussed in the last section (step 4 of the iterative 

process), in order to discover leading indicators, we first 
need to compute the “time shifts” between the time series 
indicators, define the threshold alignment warping distance 
for “high correlation” between the indicators, and then 
determine whether there is any  “causal relationship” from 
the “high correlative” pairs. We find that DTW and Granger 
Causality complement each other and serve well for the 
above two purposes in leading indicator discovery. This 
section provides detailed descriptions on how these two 
techniques can be used jointly in uncovering leading 
indicators from a set of time series indicators. 

 

A.  Using Dynamic Time Warping to Discover the 
Correlation and the Time Order of Indicators 
First, we use Z-score normalization [7] to remove the 

baseline and re-scale the indicators so that the range of all 
indicators has mean of zero and variance of one. Then we 
use Dynamic Time Warping (DTW) that is often applied in 
speech and handwriting recognition [24] to discover the 
nonlinear alignment similarity between KPIs. 

Suppose we have KPI X, which has the value sequence [X1, 
X2, … , Xn], and KPI Y , which has the value sequence [Y1, 
Y2, …, Ym] over time. The best warping distance DTW(X, Y) 
between X and Y is presented as: 
 

 (1) 
 
where D(Xn, Ym) is the local distance between the elements 
Xn and Ym, and X(1, n-1) and Y(1, m-1) are the subsequences [X1, 
X2, …, Xn-1] and [Y1, Y2, …, Ym-1] respectively. A threshold 
need to be set such that if the best warping distance DTW(X, 
Y) is below it there should exist a high correlation between X 
and Y. 

For leading indicator discovery based on DTW, we use 
the alignment warp path to discover the time order in highly 
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correlated indicators and the approximate time shifts 
between them. The alignment warp path is composed of two 
arrays which are of the same length, each of which consists 
of the increasing or decreasing position numbers in an 
indicator. The elements of the same array number in the two 
arrays are matched positionally by DTW to achieve the 
optimal alignment. Let the alignment warp path between 
KPI X and KPI Y be composed of arrays PX and PY from X 
and Y respectively. The time shift between X and Y is 
abs(mode(PX - PY )), where abs is the absolute value 
function. Mode(x) returns the element with the highest 
frequency in the array x.  

• If mode(PX - PY ) < 0, KPI X precedes Y , and is 
considered as the leading indicator of Y  if X and Y 
are highly correlated. 

• If mode(PX - PY ) > 0, Y is the leading indicator.  
• If mode(PX - PY ) = 0, X and Y do not exhibit a 

leading relationship in either direction.  
For example, given X be [4, 5, 3, 6, 8] and Y be [5, 2, 7, 8, 9], 
the alignment warp path PX is [1, 2, 3, 4, 5, 5] and PY is [1, 1, 
2, 3, 4, 5]. The time shift between them is 1, and KPI Y is 
preceding KPI X if they are regarded to be highly correlated. 
 

B. Using Granger Causality to Score the Significance of 
Causal Relationship 

Granger Causality [6] is a measure to determine whether 
one time series helps to predict another time series. Given 
lagged values of X and Y from time 1 to t-1, we want to 
forecast the value of Y at time t. We say that X 
Granger-cause Y, if the variance of the optimal linear 
prediction based on lagged X and Y is smaller than if only 
based on lagged Y. In other words, the addition of lagged X 
to lagged Y makes better prediction than only lagged Y. 
Granger Causality usually uses an F-test on the lagged 
values of X and Y to test whether X provides significant 
information of the future values of Y.  

Let Yi and Xi be the values of Y and X at time i respectively. 
The data are described with a bivariate vector regressive 
model: 

(2) 
where k is the lag length, α and β are coefficients, and єt is 
the error term. The null hypothesis H0 is α1 = α2 = … = αk = 
0. The equation (2) restricted under the null hypothesis is the 
model: 

. (3) 

The residues Res1 and Res0 of these two models are  
and , where n is the whole test time. The sum of 

squares of residues in these two models can be transformed 
to a modified ratio which is: 

. (4) 
 
TS, or “test statistic” follows an F-distribution if the null 
hypothesis is true. The value of test statistic is assigned a 
significance p-value, which is in the range of [0, 1], by 
comparing to the corresponding entry in the table of F-test 
critical value. The smaller the significance score, the higher 
the possibility to reject the null hypothesis, or to accept the 
causal relationship. The significance score is directional. If 
the significance score of X to Y is small enough, while the 
significance score of Y to X is not, we regard X as the leading 
indication of Y, and vice versa. If the scores of two 
directions are very close, neither is presumed to have a 
leading relationship to the other. 

 

IV. ROOT LEADING INDICATOR IDENTIFICATION 
METHODS  

 
Any specific metric may have many leading indicators, 

each of which could in turn lead to additional metrics. This 
many-to-many directional complexity increases 
polynomially as the number of indicators increases. Domain 
experts are unable to determine all of the leading indicators, 
and decision making is impossible when there are too many 
leading indicators to be optimized. Therefore complexity 
must be reduced to provide focus on the critical leading 
indicators. These critical leading indicators are called root 
leading indicators and are root causes of one or more key 
metrics. We propose the use of adaptive agglomerative 
clustering to obtain the hierarchical relationships in a 
dendrogram, thus partitioning all of the metrics into clusters 
and ultimately identifying the “root” leading indicators. 

From the results of DTW and Granger Causality, we 
derive the distance matrix wherein each cell is a value 
indicating the correlation between the corresponding row 
metric (represented as Ki) and the column metric 
(represented as Kj), and the diagonal values are zeros. In 
case of DTW, the cell value is the alignment warping 
distance. In case of Granger Causality the significance 
scores are directional, thus we need a transformation to 
determine the distance matrix. In the Granger Causality 
distance matrix, the cell value of row Ki and column Kj is 
equal to the cell value of row Kj and column Ki, and is equal 
to the smaller significance score in the scores from Ki to Kj 
and from j to i. After the distance matrix is derived, 
agglomerative clustering constructs a dendrogram on top of 
the metrics. The metrics are then partitioned into clusters 
such that metrics within the same cluster have a higher 
correlation between each other as compared to the metrics in 
other clusters. 
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By cutting different edges in the aforementioned 
dendrogram we can obtain a different number of clusters. 
However, where to cut the edges is uncertain in the 
traditional agglomerative clustering, and even domain 
experts cannot determine the number of clusters in a 
complex set of metrics. Modified agglomerative clustering 
is able to solve this problem. The cluster number can be 
determined by Akaike Information Criterion (AIC) - 
essentially the log-likelihood of the model increasingly 
penalized by the number of parameters. The AIC score of a 
cluster assignment Ci is defined as: 

 (5) 
where L(Ci) is the log-likelihood of Ci. K × m is the number 
of parameters in the model. K is the number of clusters, and 
m is the number of coordinates of each metric. We assume 
that each cluster is following multivariate Gaussian 
distribution. The log-likelihood L(Ci) is: 

, (6) 
where nj is the number of metrics in cluster j, and σj is 
estimated by the average distance between all pairs of 
metrics in cluster j. The cluster number that obtains the 
highest AIC score is chosen.  

Because the metrics in the same cluster are cohesive 
based on the non-traditional correlation function, σj is 
calculated using the warping distance matrix from DTW. 
Moreover, we also project the metrics into the two 
dimensional space where the traditional distance function 
preserves the property of the correlation obtained from 
DTW in the original space. The visualization of metrics in 
this latent two-dimensional space helps to determine the 
number of clusters, and offers vivid intuitions of the 
relationships between metrics [22]. We use 
multidimensional scaling (MDS) to create a space that 
faithfully captures the observed correlation between entities 
in this space [8, 9]. In our experiment, the input n × n 
pairwise distance matrix of n metrics is transformed to an n 
× 2 matrix such that every metric is projected into a two 
dimensional space. In each of the obtained clusters the 
metrics are sequenced based on the time order and shifts 
between them. The metrics preceding all other metrics in the 
cluster are regarded as the root leading indicators of the 
other metrics in this cluster.  

 

V. TRACING ANOMALIES 
We adopt Adaptive Threshold [18] to detect anomalies in 

each KPI. It uses Exponentially Weighted Moving Average 
(EWMA) [21] to estimate the recent mean of the time series 
KPI, and adaptively sets the alarm threshold. If the KPI is 
below the threshold at a particular time, the alarm signals. 

Given a KPI w, and the value of w at time i wi, the alarm 
signals when: wi < αμi-1, where μi-1 is calculated from the 
past history of w before time i. α in the range (0, 1) is the 
percentage of mean value below which the alarm prepares to 
signal. μi can be estimated by using EWMA as follows 

, (7) 
where λ is the EWMA factor. The direct use of the above 
algorithm may yield many false alarms. Usually it is 
modified such that if there are a certain number of 
successive violations of the threshold, then the alarm 
signals. 
 Before tracing anomalies in workflow, the correlations 
between anomalies need to be mined. Since the number of 
anomalies is usually too few to extract any correlation rules, 
we assume that highly correlated anomalies should lie in 
highly correlated KPIs. If anomalies show the leading 
relationship extracted from their KPI analysis process, the 
anomaly appearing first within a range of a certain time 
period is the anomaly source. For example, the anomaly a is 
detected in KPI A at time ta, the anomaly b is detected in KPI 
B at time tb, and if we find the KPI A is the leading indicator 
of KPI B with the time shift T and tb-ta is in the range (0, T+ 
ε), where ε is a small positive value due to time shift 
estimation error, then a is the anomaly source of b. If an 
anomaly c in KPI C is detected at time tc, C is leading B in 
time T’, and tc-tb is in the range (0, T’+ ε), then c is the 
anomaly source of a and b. 
 

VI. CASE STUDIES 
In order to illustrate how the proposed system and 

methods can be applied in specific business processes, and 
how the leading indicators help guide decision making, a 
study was made of two typical real-world workflows in 
production printing domain: transactional printing and book 
production. The first case study gives a detail description of 
applied techniques of leading indicator discovery and 
anomaly tracing process. The second case study mainly 
focuses on the iterative process. A domain-expert helped 
construct two discrete event driven domain models based on 
real world printing applications that in turn drove the data 
collection points (or metrics), KPI filtering, and leading 
indicator validation. The discrete event model tracks 
asynchronous discrete incidents (or events) with the system 
state transitions based on specified time intervals [10], thus 
delivering the time series data required for these case 
studies. 

A (1) Leading Indicator Discovery in a Transactional 
Production Printing Workflow Scenario 
Figure 2 illustrates a transactional production printing 

workflow model, consisting of 7 activities or operations 
(shown in circles) connected via transactions (shown as 
rectangles). Some of the activities or operations can be 
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performed either automatically or manually. For example, 
check printing is a typical transactional printing workflow, 
which usually involves a “shell” (a pre-printed empty check 
form or frame), and a variable information (VI) data stream 
that contains the individualized content for each check. The 
upstream workflow activities include designing the check 
shell (“Generate Shell Format”) and transaction data model 
for check content (“Generate Transaction VI”). Before 
production starts, the check shells are pre-printed 
(“Generate Shell”) and loaded into the printer (“Load 
Shell”). As soon as the production cycle kicks off, the 
transaction VI stream is combined with its overlay shell 
form and the composed result is then printed on the 
pre-printed and loaded checks shells at a production printer. 
Finally, finishing operations (such as cut and fold) take 
place on the printed checks. Figure 3 shows the 7 time series 
indicators that are the throughput metrics of each constituent 
activity or operation in the case study of transaction 
workflow model. More specifically, GenShellFormat, 
GenShell, LoadShell, GenVIData, VIComp, Printing, and 
CutFold are the throughput metrics of “Generate Shell 
Format”, “Generate Shell”, “Load Shell”, “Generate 
Transaction VI”, “VI Data Composition”, “Printing”, and 
“Cut & Fold”, respectively.  

In this scenario, we assume that the processing time for 
each activity within the workflow model follows a different 
Gaussian distribution. The flow of one activity to the next is 
delayed for some specified time, and noise exists in the 
model according to the actual environment. Specifically, the 
operator needs 20 minutes to transfer items from the 
synchronized activities “Generate Shell Format” and 
“Generate VI Data” to activity “VI Data Composition”; it 
takes 10 and 15 minutes to transfer from the previous 
activities to “Printing” and from  “Printing” to  “Cut&Fold” 
respectively. There exists 5 minutes from “Generate Shell” 
to “Load Shell”. The indicators in Figure 3 are time series 
data tracking the throughput of each activity (transactions 
per minute) over a total recording time of 500 minutes. 

The cell value in the symmetric matrix in Table 1 
represents the optimal warping distance between the 
corresponding column metric and the corresponding row 
metric. Thus, the smaller the cell value, the higher 
possibility of the corresponding column metric highly 
correlated with the corresponding row metric. The 
significance score of metric i Granger-causing metric j is 
recorded in the cell intersecting row i and column j in Table 
2. The smaller the significance score, the higher the causal 
relationship existing between the corresponding row metric 
and column metric. The time shift matrix in Table 3 is 
calculated from the alignment warp path. The positive cell 
value means that the row metric appears before the column 
metric. On the contrary, the negative cell value means the 
column metric appears before the row metric. Zeros in cells 
indicate diagnostic relationship. 

 

 

 
Fig. 2. A transaction production printing workflow scenario 
 

 Fig. 3. Seven transaction printing time series KPIs 

 
 Fig. 4.The dendrogram of agglomerative clustering on transaction printing 
KPIs and visualization of KPIs 
 
From these three tables, it can be seen that GenShell is 
highly correlated to LoadShell.  This is because the 
corresponding operations are directly connected in the 
workflow model.  The time shift between them is calculated 
by using DTW to be 5, as shown in Table 3 that indicates 
GenShell leads LoadShell. 
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TABLE I 

THE ALIGNMENT WARPING DISTANCE MATRIX OBTAINED USING DTW ON THE METRICS.  
 GenShell GenShellFormat GenVIData LoadShell VIComp Printing CutFold 

GenShell 0 0.3753 0.3925 0.0036 0.4049 0.1417 0.5618 
GenShellFormat 0.3753 0 0.0268 0.3780 0.0637 0.4179 0.8229 
GenVIData 0.3925 0.0268 0 0.3952 0.1155 0.5128 0.9064 
LoadShell 0.0036 0.3780 0.3952 0 0.4075 0.1425 0.5645 
VIComp 0.4049 0.0637 0.1155 0.4075 0 0.3158 0.6395 
Printing 0.1417 0.4179 0.5128 0.1425 0.3158 0 0.4064 
CutFold 0.5618 0.8229 0.9064 0.5645 0.6395 0.4064 0 

 
TABLE II 

RESULTANT CAUSAL RELATION SIGNIFICANCE MATRIX USING GRANGER CAUSALITY.  
 GenShell GenShellFormat GenVIData LoadShell VIComp Printing CutFold 

GenShell 0 0.7149 0.8384 0.0017 0.3511 0.0018 0.8569 
GenShellFormat 0.9255 0 0.0244 0.9290 0.0952 0.6159 0.5046 
GenVIData 0.5882 0.0019 0 0.6920 0.0009 0.4435 0.6363 
LoadShell 0 0.4998 0.7863 0 0.4397 0.0020 0.7923 
VIComp 0.7044 0.0010 0.2922 0.7702 0 0.0756 0.2699 
Printing 0.1658 0.9082 0.9466 0.3713 0.6116 0 0.5674 
CutFold 0.9373 0.8367 0.6630 0.9624 0.2525 0.5886 0 

 
TABLE III 

THE TIME SHIFT MATRIX OBTAINED USING DTW. 

 
Granger Causality shows that neither GenShell nor 
LoadShell are leading indicators to the other since the values 
in the corresponding cells in Table 2 are small enough and 
thus very close to each other. Printing is also highly 
correlated with GenShell and LoadShel. Further, the time 
shift matrix indicates that loadShell affects Printing after 10 
minutes. GenShellFormat affects VIComp after 20 minutes.  
Note that these exactly correspond to the transfer times 
previously mentioned. The reason that Printing is affected 
by GenShell and LoadShell is that the processing rate of 
GenShell and LoadShell is lower than the processing rate of 
GenShellFormat, GenVIData, and VIComp.  Thus, to 
optimize the throughput of Printing, embodiments herein 
should increase the throughput of Generate Shell and Load 
Shell. For the same reason, the throughput of VI data 
composition can be improved by increasing the processing 
rate of Generate Shell Format. These results are helpful for 

domain experts to make decisions on some objective KPI 
optimization, especially in a complex system.  

As mentioned previously, adaptive agglomerative 
clustering is also performed on the metrics.  The 
dendrogram of agglomerative clustering on the alignment 
warping distance matrix with respect to this example is 
shown on the left panel in Figure 4.  More specifically, 
Figure 4 shows the clustering procedure for the previously 
mentioned seven time series metrics (discussed above with 
respect to Figures 2 and 3), and can be used to construct 
clusters by cutting edges. The visualization of metrics by 
using MDS is shown on the right panel in Figure 4. AIC 
scores for different clustering assignment are calculated. 
The score is maximal when the metrics are divided into two 
clusters. Embodiments herein can observe these two clusters 
in the MDS visualization shown in Figure 4.   

 GenShell GenShellFormat GenVIData LoadShell VIComp Printing CutFold 
GenShell 0 129 0 5 109 10 32 
GenShellFormat -129 0 0 125 20 0 377
GenVIData 0 0 0 0 71 0 0 
LoadShell -5 -125 0 0 114 10 36 
VIComp -109 -20 -71 -114 0 0 176 
Printing -10 0 0 -10 0 0 15 
CutFold -32 -377 0 -36 -176 -15 0 
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The metrics in the same cluster are identified similarly in 
Figures 2 and 4.  One cluster has GenShell, LoadShell, 
Printing, and CutFold.  The other has GenShellFormat, 
GenVIData, and VIComp.  In the former cluster, the root 
leading indicator is GenShell as the results of DTW, or both 
GenShell and LoadShell are root leading indicators as the 
results of Granger Causality.  In the latter cluster, the root 
leading indicator is GenShellFormat. If the focal lagging 
indicator is the finishing throughput (The finishing 
throughput is the throughput of the activity ‘Cut & Fold’), 
GenShell is its root leading indicator according to DTW.  
After domain experts (or users) examine the results obtained 
from leading indicator analysis, they could decide to 
increase the processing rate of the activity ‘Generate Shell’ 
to optimize the finishing throughput.  In this example, the 
time that this leading indicator affects the finishing 
throughput is approximately 30 minutes. After improving 
GenShell and LoadShell, the finishing throughput is almost 
doubled told by domain experts. 

A (2) Tracing Anomalies in the Transactional Production 
Printing Workflow Scenario 
Take this transaction beta printing workflow as an 

example. Adaptive Threshold algorithm can find anomalies 
in three KPIs, GenShell, LoadShell, and Printing. These 
three KPIs from time 231 to time 280 and the alarm 
thresholds below which the alarm prepares to signal are 
illustrated in Figure 5. α and λ are set to 0.5 and 0.98 
respectively. From Figure 5, we note that GenShell rings the 
alarm after time 242, LoadShell after time 247, and Printing 
after time 252. We define that until there are 3 consecutive 
violations of the threshold, the alarm rings. The anomalies of 
GenShell, LoadShell and Printing denoted as “A”, “B”, and 
“C” in Figure 5, occur at 245, 250, and 255 respectively. 
Note that Adaptive Threshold detects all anomalies without 
any false alarms. In order to trace the anomalies, we first 
find that these three anomalies are in the highly related KPIs. 
By observing the time shift matrix in Table III, GenShell 
precedes LoadShell by 5 minutes, and LoadShell precedes 
Printing by 10 minutes too. Obviously, the anomaly “C” 
occurs in operation “Printing” can be traced back to 
operation “Load Shell”, and then to operation “Generate 
Shell”. Thus the operators can go to the operation “Generate 
Shell” directly to solve the problem in the original anomaly 
source instead of inspecting all three operations. 

B A Book Printing Workflow Scenario 
Figures 6-8 demonstrate an example of an evolving 

procedure of leading indicator analysis for an example book 
printing workflow scenario.  Figures 6-8 illustrate a book 
printing workflow model along the top of each figure, with a 
dendrogram of the agglomerative clustering on the 
alignment warping distance matrix shown to the left below 
each printing workflow model, and a visualization of 
metrics by using MDS shown to the right below each 

printing workflow model. In this case study, the tested 
dataset contains three evolving phases of book printing.  
More specifically, Figures 6, 7, and 8 illustrate the evolving 
process of leading indicator analysis and how it guides the 
decision making for continuing process improvement.   

 

 
Fig. 5. Three KPIs from the transaction printing workflow, 
alarm threshold, and anomalies. 
 

In this example, the book printing workflow involves book 
submission, printer setup, printing, folder setup, folding, 
staple setup, and stapling.  Folder setup and staple setup are 
assumed to be required for all books.  However, printer 
setup is only necessary when the book type (e.g., perfect 
bound book, booklet, case bound book, etc.) has changed 
from a previous book to the current book.  If both the 
previous book and current book have the same paper type, 
the same color requirement, etc., the printer does not need to 
be set up. Otherwise, certain amount of time is consumed for 
printer setup. The processing time for all the activities (or 
operations) depends on the volumes of books and their 
typical running speed. There are eight indicators identified 
in this scenario, such as ‘Book Submission Rate’ (BookSub), 
thoughputs of ‘Printer Setup’ (PrintSetup), ‘Printing’, 
‘Folder Setup’ (FoldSetup), ‘Folding’, ‘Staple Setup’ 
(StapleSetup), ‘Stapling’, and ‘Book Type Changing Rate’ 
(BookTypeChange). 

Figure 6 illustrates a scenario where the eight indicators 
are divided into five clusters according to AIC score as 
shown in the MDS visualization. In this scenario, it is 
discovered that the folder setup is the root leading indicator 
of the finishing (e.g., staping) throughput. This folder setup 
inefficiency may have been caused by operator inefficiency 
or folder error. In response to this leading indicator 
discovery shown in Figure 6, domain experts decide to 
improve the folder setup efficiency by either providing 
operator training or correcting folder errors to meet the 
overall book throughput demand. By improving the folder 
setup operation, we can print more books in the same 
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amount of time. The finishing throughput is improved 9.4% 
that cannot be achieved by any other component 
improvement in the workflow. Then in Figure 7, after folder 
setup improvement, the metrics are grouped into four 
clusters. The printing throughput thus becomes the root 

leading indicator of the finishing throughput.  According to 
this leading indicator discovery, shown in Figure 7, domain 
experts decide to increase the number of printers, or install 
higher speed printers to improve the printing throughput.  

  
 

Fig. 6. Iteration – 1: FoldSetup is the root leading indicator. 
 

 
Fig. 7. Iteration -2: Printing is the root leading indicator. 
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Fig. 8. Iteration – 3: BookTypeChange is the root leading indicator. 
 

With 5 more high-speed printers deployed, the finishing 
throughput is then improved by 16.6%, assuming the submitted 
book types are the same. However, as business conditions 
evolve and/or customer base grows the submitted book types 
are very likely to change dramatically. In the example of Figure 
8, there are 5 book types coming in compared to the previous 2 
books types, metrics are then divided into 3 clusters. With the 
increased book types submitted into the workflow, the printer 
setup throughput is now the leading indicator of the finishing 
throughput based on the distance matrix of DTW. However, the 
causal significant matrix obtained from Granger causality 
further indicates that BookTypeChange is the leading indicator 
of all other metrics except BookSub.. Therefore, the 
BookTypeChange is the root leading indicator for the overall 
book throughput. Then the domain experts decide to update the 
job scheduling algorithm so that similar book types can be 
printed in a batch without incurring additional printer setup. 
This demonstrates a continuing process improvement based on 
iteratively leading indicator discovery. We also note that in this 
scenario Granger causality is supplementary in helping to 
discover hidden leading indicators when the time shift obtained 
from DTW between some metrics are not obvious.  
 

VII. Conclusion 
In this paper, a semi-automatic system and methods are 

proposed to iteratively discover leading indicators from 
real-time workflow events, equipment logs, and other metrics 
sources, to enable incremental adjustment of the underling 
domain model, locate the anomaly sources, and/or addition or 
subtraction of data collection points. We also demonstrate the 
applications of the proposed system and methods in two 
production printing workflow scenarios. In addition, the 
powerful impact of this iterative leading indicator analysis on  

 

the continuing business process shows that it can improve the 
operational decision support.  By properly incorporating 
domain knowledge with data mining algorithms, the proposed 
system not only possesses the capability to scale up in more 
complex environment with a large amount of data points by 
filtering out the redundant indicators based on domain 
knowledge, but also feeds back the leading indicator discovery 
within the domain model so that the domain model also 
incrementally evolves with this new knowledge. We also find 
out that the processes of determining the time order and the 
causal direction for the correlated indicators can comprise 
applying both Dynamic Time Warping and Granger Causality 
techniques to the time series of data. A modified agglomerative 
clustering method based on Akaike Information Criterion (AIC) 
selection criteria is presented to ultimately identify the root 
leading indicators and enable the decision maker(s) to act upon 
the most critical factors for process improvement.  Concerning 
the future work, we are going to investigate and prototype an 
operational intelligence platform that enables the timely access 
to heterogeneous operational data, and has the ability to predict 
and proactively adapt to the perceived changes.  We are also 
looking into utilizing state-of-the-art ontology to more 
efficiently model the domain as well as knowledge reasoning 
techniques and data mining algorithms that can be mutually 
leveraged. 
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